

Memorial Sloan Kettering Cancer Center

Pirtobrutinib

Anthony Mato, MD, MSCE

Director, CLL Program Memorial Sloan Kettering Cancer Center New York, New York What are the unmet needs in the R/R setting?

Limitations of covalent BTK inhibitors?

No standard of care for double-refractory disease?

Several BTKi options to consider with differences in BTKi specificity, MOA, and potential for off-target effects.

BTKi, Bruton tyrosine kinase inhibitors; MOA, mechanism of action.

Kaptein A, de Bruin G, Emmelot-van Hoek M et al. Blood. 2018;132(Supplement 1):1871.

Up to 7 Years of Follow-Up in the RESONATE-2 Study of Ibrutinib for Patients With TN CLL: Efficacy

	Favor ibrutinib	Favor chlorambucil	N	Hazard Rati	o 95% Cl		
All patients	lei		269	0.167	(0.117, 0.238)		
Age							
< 70	H• H		80	0.090	(0.036, 0.222		
≥ 70	H+H		189	0.188	(0.126, 0.279)		
Rai stage at baseline							
Stage 0 – II	H•1		137	0.212	(0.130, 0.345)		
Stage III - IV	нн		132	0.128	(0.076, 0.217		
ECOG at baseline							
0	H+H		112	0.187	(0.111, 0.314)		
1 - 2	He-H		157	0.156	(0.095, 0.254		
Bulky disease							
< 5 cm	H+1		170	0.163	(0.102, 0.262		
≥ 5 cm	H		94	0.125	(0.070, 0.225		
High risk (<i>TP53</i> mutation, ^a del[11q], and/or unmutated IGHV)							
Yes	⊨ I		142	0.091	(0.054, 0.152		
No	⊢ •−1		127	0.260	(0.155, 0.435		
β_2 -microglobulin at baseline							
≤ 3.5 mg/L	I		74	0.267	(0.134, 0.532		
> 3.5 mg/L	le l		174	0.118	(0.075, 0.185		
	0.0 0.5	1.0 1.5 2.0					
Hazard Ratio							

PFS in Patient Subgroups of Interest

Efficacy

- Ibrutinib-treated patients had an 84% reduction in risk of progression or death
- Ibrutinib led to a 97% reduction in risk of PD or death in patients with del(11q) and 80% for those without del(11q) vs chlorambucil
- Ibrutinib led to an 89% and 80% reduction in risk of PD or death in patients with unmutated and mutated IGHV, respectively, vs chlorambucil

Barr PB, et al. ASCO 2020. Abstract 7523.

Overall discontinuation rate at 7 years = 53%

Ibrutinib discontinuation for intolerance

ARTICLES

Toxicities and outcomes of 616 ibrutinibtreated patients in the United States: a real-world analysis

41% of patients discontinued ibrutinib at a median follow-up of 17 months

Toxicity accounted for the **majority** of discontinuations (over half) in both F/L and R/R CLL patients

Most common toxicities in R/R population: atrial fibrillation 12.3%, infection 10.7%, pneumonitis 9.9%, bleeding 9%, and diarrhea 6.6%

Reason for ibrutinib discontinuation	lbrutinib in front-line (n=19)	lbrutinib in relapse (n=231)
Toxicity	63.1% (n=12)	50.2% (n=116)
CLL progression	15.8% (n=3)	20.9% (n=49)
Other/unrelated death	5.3% (n=1)	12.1% (n=28)
Physician's or patient's preference	10.5% (n=2)	6.7% (n=15)
RT DLBCL	5.3% (n=1)	4.6% (n=10)
Stem cell transplantation/CAR T-ce	11 0	3.3% (n=8)
Financial concerns	0	0.8% (n=2)
Secondary malignancy	0	0.8% (n=2)
RT Hodgkin lymphoma	0	0.4% (n=1)

CLL: chronic lymphocytic leukemia; RT DLBCL: Richter transformation to diffuse large B-cell lymphoma; CAR T-cell: chimeric antigen receptor T-cell); RT: Richter transformation.

This study identified covalent BTK inhibitor **intolerance** as a major emerging issue in the field of CLL

BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; F/L, first line; R/R, relapsed/refractory. Mato et al *Haematologica* 2018;103:874-879.

Acquired Resistance to Covalent BTKi

- Majority of patients have identified mutations in *BTKC481* at the time of disease progression on ibrutinib; ~53-87% of patients
- Mutations also identified in PLCG2, immediately downstream of BTK
- BTKC481 mutations are also mechanism of resistance for acalabrutinib; 69% of patients

Figure from Burger et al *NEJM* 2020; Woyach et al *NEJM* 2014; Woyach et al *JCO* 2017; Scarfo et al EHA 2020; Ahn et al *Blood* 2017; Woyach et al ASH 2019; Burger *Nature Communications* 2016

Treatment of CLL after Covalent BTKi

- Venetoclax: oral BCL2-inhibitor
- Front-line setting and relapsed setting including after cBTKi
- Approved as fixed-duration therapy (24 months in R/R setting)

Figure from Jones et al *Lancet Oncology* 2018; Seymour et al *NEJM* 2020; Fischer et al *NEJM* 2020

"Double Exposed" Patient: Unmet Need

A subset of patients will ultimately have **progressive CLL** following treatment with both venetoclax and covalent BTK inhibitor (cBTKi)

Standard of care options:

Chemo+/-immunotherapy (CIT)

Phosphoinositide-3-kinase inhibitors (PI3Ki) idelalisib, duvelisib Clinical trial options: Non-covalent BTKi (ncBTKi)

CAR T-cell therapy

Several other investigational agents

Landmark trials leading to approvals of CIT and PI3Ki did not include patients previously treated with cBTKi or venetoclax.

Furman et al *NEJM* 2014; Flinn et al *Blood* 2018; Mato et al *Lancet* 2021; Siddiqi et al *Blood* 2021; Thompson MC et al ASH 2021

After BTKi → venetoclax: PI3Ki did not result in durable remissions and therefore is <u>not an acceptable SOC</u> in the 3rd line setting in modern era

Median PFS = 4 months

Outcomes of patients with CLL sequentially resistant to both BCL2 and BTK inhibition

Thomas E. Lew,^{1,2,4} Victor S. Lin,^{1,3,4} Edward R. Cliff,¹ Piers Blombery,^{1,3,4} Ella R. Thompson,⁴ Sasanka M. Handunnetti,¹ David A. Westerman,^{1,3,4} Bryone J. Kuss,⁵ Constantine S. Tam,^{1,3,8} David C. S. Huang,^{2,3} John F. Seymour,^{1,3} Andrew W. Roberts,¹⁻³ and Mary Ann Andreson^{1,2}

¹Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ²Blood Cells and Blood Cancer Division, Waiter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; ¹²Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia; ⁴Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ⁴College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; and ¹Department of Hamatology, Stroent's Hospital Melbourne, Fitzry, VIC, Australia;

Double Refractory Pts

Median OS = 3.6 months

Non-Covalent BTK Inhibitors

Several BTKi options to consider with differences in BTKi specificity, MOA, and potential for off-target effects.

Kaptein et al. Blood 2018;132(suppl 1):1871.

Pirtobrutinib Is a Non-Covalent BTK Inhibitor

WT=wild-type.

Pirtobrutinib, A Highly Selective, Non-covalent (Reversible) BTK Inhibitor In Previously Treated CLL/SLL: Updated Results From The Phase 1/2 BRUIN Study

Anthony R. Mato¹, John M. Pagel², Catherine C. Coombs³, Nirav N. Shah⁴, Nicole Lamanna⁵, Talha Munir⁶, Ewa Lech-Maranda⁷, Toby A. Eyre⁸, Jennifer A. Woyach⁹, William G. Wierda¹⁰, Chan Y. Cheah¹¹, Jonathan B. Cohen¹², Lindsey E. Roeker¹, Manish R. Patel¹³, Bita Fakhri¹⁴, Minal A. Barve¹⁵, Constantine S. Tam¹⁶, David J. Lewis¹⁷, James N. Gerson¹⁸, Alvaro J. Alencar¹⁹, Chaitra S. Ujjani²⁰, Ian W. Flinn²¹, Suchitra Sundaram²², Shuo Ma²³, Deepa Jagadeesh²⁴, Joanna M. Rhodes²⁵, Justin Taylor¹⁹, Omar Abdel-Wahab¹, Paolo Ghia²⁶, Stephen J. Schuster¹⁸, Denise Wang²⁷, Binoj Nair²⁷, Edward Zhu²⁷, Donald E. Tsai²⁷, Matthew S. Davids²⁸, Jennifer R. Brown²⁸, Wojciech Jurczak²⁹

¹Memorial Sloan Kettering Cancer Center, New York, USA; ²Swedish Cancer Institute, Seattle, USA; ³University of North Carolina at Chapel Hill, Chapel Hill, USA; ⁴Medical College of Wisconsin, Milwaukee, USA; ³Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA; ⁵Department of Haematology, St. James's University Hospital, Leeds, UK; ¹Institute of Hematology and Transfusion Medicine, Warsaw, Poland; ⁸Oxford University Hospital, Leeds, UK; ¹Ontohil Cancer Center, Oxford, UK; ⁹The Ohio State University Comprehensive Cancer Center, Columbus, USA; ¹⁰MD Anderson Cancer Center, Houston, USA; ¹¹Linear Clinical Research and Sir Charles Gairdner Hospital, Perth, Australia; ¹²Winship Cancer Institute, Sarasota, USA; ¹⁴University of California San Francisco, USA; ¹⁵Mary Crowley Cancer Research, Dallas, USA; ¹⁰Plumer Hospital, Perth MacCallum Cancer Center, Royal Melbourne Hospital, Plymouth, US; ¹⁰Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA; ¹⁹University of Melbourne, Melbourne, Australia; ¹⁷Plymouth Hospitals NHS Trust - Derriford Hospital, Plymouth, UK; ¹⁰Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA; ¹⁰Plenter MacCallum Cancer Center, Nave Hyde, NY, ²²Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; ²⁴Cleveland Clinic, Cleveland, OH, USA; ²⁵Dornthwell Health Cancer Institute, Danald and Barbara Zucker School of Medicine at Mount Sinai, New York, NY, ³⁷Robert H. Lurie Comprehensive Cancer Center Institute, and Sinchara Zucker School of Medicine at Mount Sinai, New Yet, NY, ³⁷Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; ²⁴Cleveland Clinic, Cleveland Clinic, CL, ²⁴Dana-Farber Cancer Institute, Danald and Barbara Zucker School of Medicine at Hount Sinai, New Yet, NY, ³⁷Rohinersità Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy; ²⁴Duo Oncology,

Resistance and Intolerance Limit Covalent BTK Inhibitor Outcomes

Ibrutinib discontinuation from 4 prospective studies¹

• Ibrutinib discontinuation rates at 5 years

- Front line = 41%¹
- Relapsed/refractory = 54%²

Available options following covalent BTK inhibitor treatment are limited:

- Covalent BTK inhibitor retreatment: Only effective in the context of covalent BTK intolerance, not progression
- Venetoclax: Efficacious, but complicated administration and not appropriate for all patients
- PI3K Inhibitors: Limited benefit in this population and significant toxicity burden
- Chemoimmunotherapy: Limited benefit in this population and most current patients have already received these regimens

Pirtobrutinib is a Highly Potent and Selective Non-Covalent (Reversible) BTK Inhibitor

Kinome selectivity¹

Highly selective for BTK

Xenograft models *In vivo* activity similarly efficacious as ibrutinib in WT; superior in C481S

- Nanomolar potency against WT & C481-mutant BTK in cell and enzyme assays²
- >300-fold selectivity for BTK vs 370 other kinases²
- Due to reversible binding mode, BTK inhibition not impacted by intrinsic rate of BTK turnover²
- Favorable pharmacologic properties allow sustained BTK inhibition throughout dosing interval²

BID, twice-daily; BTK, Bruton tyrosine kinase.

¹Mato et al. *Lancet* 2021;397:892-901. ²Brandhuber et al. *Clin. Lymphoma Myeloma Leuk.* 2018;18:S216. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).

Phase 1/2 BRUIN Study: Design, Eligibility and Enrollment

Data cutoff date July 16, 2021.

BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; DoR, duration of response; ECOG, Eastern Cooperative Oncology Group; MTD, maximum tolerated dose; ORR, overall response rate; QD, once daily; SLL, small lymphocytic leukemia.

^aEfficacy-evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. ^bOther includes diffuse large B-cell lymphoma, Waldenstrom macroglobulinemia, follicular lymphoma, mantle zone lymphoma, Richter transformation, B-PLL, Hairy Cell Leukemia, PCNSL, and other transformation.

Mato et al. Lancet 2021;397:892-901.

BTK Pretreated CLL/SLL Patient Characteristics

Characteristics	N = 261
Median age, y (range)	69 (36-88)
Female, n (%) Male, n (%)	84 (32) 177 (68)
ECOG PSª, n (%) 0 1 2	138 (53) 104 (40) 19 (7)
Median number of prior lines of systemic therapy (range)	3 (1-11)
Prior therapy, n (%) BTK inhibitor Anti-CD20 antibody Chemotherapy BCL2 inhibitor PI3K inhibitor CAR-T Stem cell transplant Allogeneic stem cell transplant Autologous stem cell transplant	261 (100) 230 (88) 207 (79) 108 (41) 51 (20) 15 (6) 6 (2) 5 (2) 1 (<1)
Reason discontinued prior BTKi, n (%) Progressive disease Toxicity/Other	196 (75) 65 (25)

Baseline Molecular Characteristics ^a							
Mutation status, n (%)							
BTK C481-mutant	89 (43)						
BTK C481-wildtype	118 (57)						
PLCG2-mutant	33 (16)						
High Risk Molecular Features, n (%)							
17p deletion	51 (28)						
TP53 mutation	64 (37)						
17p deletion or TP53 mutation	77 (36)						
Both 17p deletion and TP53 mutation	38 (27)						
IGHV unmutated	168 (84)						
11q deletion	45 (25)						

Data cutoff date July 16, 2021.

BTK, Bruton tyrosine kinase; ECOG, Eastern Cooperative Oncology group performance status;

Total % may be different than the sum of the individual components due to rounding. ^aMolecular characteristics were determined centrally, in those patients with sufficient sample to pass assay quality control. 207 patients were tested for BTK and PLCG2, 180 patients for 17p deletion, 175 patients for TP53, 143 patients for 17p deletion + TP53, 200 patients for IGHV and 180 patients for 11q deletion.

Mato et al. Abstract 391. ASH 2021. https://ash.confex.com/ash/2021/webprogram/Paper147599.html

Pirtobrutinib Efficacy in BTK Pretreated CLL/SLL Patients

Data cutoff date July 16, 2021.

BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; CR, complete response; PR, partial response; SD, stable disease; SLL, small lymphocytic leukemia. *Patients with >100% increase in SPD. Data for 30 patients are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first

response assessment, or lack of adequate imaging in follow-up. ^aEfficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. ^bORR includes patients with a best response of CR, PR, and PR-L. Response status per iwCLL 2018 according to investigator assessment. Total % may be different than the sum of the individual components due to rounding.

Mato et al. Abstract 391. ASH 2021. https://ash.confex.com/ash/2021/webprogram/Paper147599.html

Progression-free Survival in BTK Pretreated CLL/SLL Patients

PFS in at least BTK pretreated patients Median prior lines = 3

PFS in at least BTK and BCL2 pretreated patients Median prior lines = 5

Median PFS: Not Estimable (95% CI: 17.0 months - Not Estimable)

Median PFS: 18 months (95% CI: 10.7 months - Not Estimable)

- 74% (194/261) of BTK pre-treated patients remain on pirtobrutinib
- Median follow-up of 9.4 months (range, 0.3-27.4) for all BTK pretreated patients

Data cutoff date July 16, 2021. BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; PFS, progression-free survival. Response status per iwCLL 2018 according to investigator assessment. Mato et al. Abstract 391. ASH 2021. https://ash.confex.com/ash/2021/webprogram/Paper147599.html

Pirtobrutinib Efficacy in BTK Pretreated CLL/SLL Patients

Pirtobrutinib Efficacy Regardless of Other Prior Therapy^a

____

Overall Response Rate Over Time^c

		OR	ORR, % (95% CI)		Median Lines of Prior Therapy,	Treated,	Efficacy- evaluable ^b ,				
	Q	25	50	75	100 median (range)	n	n			n=252	
All BTK	ore-treated patients -			H	3 (1-11)	261	252		100 T		
Patients with ≥1	2 months follow-up			⊢-●	3 (1-11)	119	119			ORR	
Patients with 17p d	el and/or TP53 mut -			⊢ ●−1	3 (1-10)	77	76	(%	80-	68%	
Patients with BTK C481 and	d PLCG2 mutations -		 	•1	3 (1-9)	26	26	se (°		V	
Prior therapy	BTK + BCL2 -			——— —————————————————————————————————	5 (1-11)	108	102	uod	60-		
	BTK + PI3K-		⊢		5 (2-11)	51	45	Res	40-		
BTK + Che	emotherapy + CD20 -			⊢●⊣	4 (2-11)	200	192	stl		PR	
BTK + Chemother	apy + CD20 + BCL2 -		1	——— —————————————————————————————————	5 (3-11)	92	86	Be	20-	54%	
BTK + Chemotherapy + C	D20 + BCL2 + PI3K -		F	•	6 (3-11)	33	27				
Reason for prior BTKi	Progression -			HH	4 (1-11)	196	190		0ㅗ	All	
discontinuation	Toxicity/other -		I	——— —————————————————————————————————	3 (1-11)	65	62				F

Data cutoff date July 16, 2021.

BTKi, Bruton tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; CR, complete response; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease; ORR, overall response rate.

Total % may be different than the sum of the individual components due to rounding. ^aPrior therapy labels indicate that patients received at least the prior therapy, rows are not mutually exclusive. ^bEfficacy evaluable patients are those who had at least one evaluable post-baseline assessment or had discontinued treatment prior to first post-baseline assessment. ^cIncludes the BTK pre-treated efficacy-evaluable CLL/SLL patients at the time of data cutoff. Data at each timepoint includes the BTK pre-treated efficacy-evaluable CLL/SLL patients who had the opportunity to be followed for at least the indicated amount of time.

Mato et al. Abstract 391. ASH 2021. https://ash.confex.com/ash/2021/webprogram/Paper147599.html

BTK C481 Mutation Status is not Predictive of Pirtobrutinib Benefit

with progression on a prior BTK inhibitor Patients free from Progression (%) BTK C481-mutated BTK C481-wildtype Months from Start of Treatment Number at risk BTK C481-mutated BTK C481-wildtype

Progression-free survival by BTK C481 mutation status^a in CLL/SLL patients

Data cutoff date July 16, 2021.

BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; SLL, small lymphocytic leukemia.

Response status per iwCLL 2018 according to investigator assessment. ^aBTK C481 mutation status was centrally determined and based on pre-treatment samples. Mato et al. Abstract 391. ASH 2021. https://ash.confex.com/ash/2021/webprogram/Paper147599.html

Pirtobrutinib Safety Profile

All Doses and Patients (N = 618)								
		Treatment		Treatment-related AEs, %				
Adverse Event	Grade 1	Grade 2	Grade 3	Grade 4	Any Grade		Grades 3/4	Any Grade
Fatigue	13%	8%	1%		23%		1%	9%
Diarrhea	15%	4%	<1%	<1%	19%		<1%	8%
Neutropenia ^a	1%	2%	8%	6%	18%		8%	10%
Contusion	15%	2%		-	17%			12%
AEs of special interest ^b								
Bruising ^c	20%	2%			22%			15%
Rash ^d	9%	2%	<1%		11%		<1%	5%
Arthralgia	8%	3%	<1%		11%			3%
Hemorrhage ^e	5%	2%	1% ^g		8%		<1%	2%
Hypertension	1%	4%	2%		7%		<1%	2%
Atrial fibrillation/flutter ^f		1%	<1%	<1%	2% ^h			<1%

No DLTs reported and MTD not reached 96% of patients received ≥1 pirtobrutinib dose at or above RP2D of 200 mg daily 1% (n=6) of patients permanently discontinued due to treatment-related AEs

Data cutoff date July 16, 2021.

AEs, adverse events; DLTs, dose-limiting toxicities; MTD, maximum tolerated dose.; RP2D, recommended phase 2 dose.

Total % may be different than the sum of the individual components due to rounding. ^aAggregate of neutropenia and neutrophil count decreased. ^bAEs of special interest are those that were previously associated with covalent BTK inhibitors. ^cAggregate of contusion, petechiae, ecchymosis, and increased tendency to bruise. ^dAggregate of all preferred terms including rash. ^eAggregate of all preferred terms including hematoma or hemorrhage. ^fAggregate of atrial fibrillation and atrial flutter. ^gRepresents 6 events (all grade 3), including 2 cases of post-operative bleeding, 1 case each of GI hemorrhage in the setting of sepsis, NSAID use, chronic peptic ulcer disease, and one case of subarachnoid hemorrhage in setting of traumatic bike accident. ^hOf 10 total afib/aflutter TEAEs, 3 occurred in patients with a prior medical history of atrial fibrillation, 2 in patients presenting with concurrent systemic infection, and 2 in patients with both. Mato et al. Abstract 391. ASH 2021. https://ash.confex.com/ash/2021/webprogram/Paper147599.html

Conclusions

- Pirtobrutinib demonstrates promising efficacy in CLL/SLL patients previously treated with BTK inhibitors
 - Efficacy was independent of BTK C481 mutation status, the reason for prior BTKi discontinuation (ie, progression vs intolerance), or other classes of prior therapy received (including covalent BTK inhibitors, BCL2 inhibitors, and PI3K-delta inhibitors)
- Favorable safety and tolerability are consistent with the design of pirtobrutinib as a highly selective and non-covalent reversible BTK inhibitor
- Randomized, global, phase 3 trials evaluating pirtobrutinib in CLL/SLL ongoing:
 - BRUIN CLL-321 Pirtobrutinib vs Investigator's Choice of IdelaR or BendaR, requires prior BTK treatment (NCT04666038)
 - BRUIN CLL-322 Pirtobrutinib + VenR vs VenR, permits prior BTK treatment (NCT04965493)
 - BRUIN CLL-313 Pirtobrutinib vs BendaR in treatment-naïve patients (NCT05023980)

Progression of Disease on Pirtobrutinib Progression on Pirtobrutinib: MSK Cohort

Memorial Sloan Kettering Cancer Center

The NEW ENGLAND JOURNAL of MEDICINE

Mechanisms of resistance to non-covalent BTKi

ORIGINAL ARTICLE FREE PREVIEW

Mechanisms of Resistance to Noncovalent Bruton's Tyrosine Kinase Inhibitors

Eric Wang, Ph.D., Xiaoli Mi, M.D., Meghan C. Thompson, M.D., Skye Montoya, B.Sc., Ryan Q. Notti, M.D., Ph.D., Jumana Afaghani, B.Sc., Benjamin H. Durham, M.D., Alex
Penson, Ph.D., Matthew T. Witkowski, Ph.D., Sydney X. Lu, M.D., Ph.D., Jessie Bourcier, M.D., Simon J. Hogg, Ph.D., Caroline Erickson, B.Sc., Dan Cui, B.Sc., Hana Cho, B.Sc.,
Michael Singer, B.Sc., Tulasigeri M. Totiger, Ph.D., Sana Chaudhry, B.Sc., Mark Geyer, M.D., Alvaro Alencar, M.D., Adam J. Linley, Ph.D., M. Lia Palomba, M.D., Catherine C.
Coombs, M.D., Jae H. Park, M.D., Andrew Zelenetz, M.D., Ph.D., Lindsey Roeker, M.D., Mary Rosendahl, Ph.D., Donald E. Tsai, M.D., Ph.D., Kevin Ebata, Ph.D., Barbara
Brandhuber, Ph.D., David M. Hyman, M.D., Iannis Aifantis, Ph.D., Anthony Mato, M.D., M.S.C.E., Justin Taylor, M.D., and Omar Abdel-Wahab, M.D.

Acquired BTK mutations on Pirtobrutinib

We identified novel acquired mutations in BTK at the time of disease progression including:

- *BTK* L528W
- BTK V416L
- *BTK* M437R
- BTK T474I
- BTK A428D

These mutations cluster around the tyrosine kinase catalytic domain of BTK.

Additionally, several patients with progressive disease had pre-existing PLCG2 mutations.

Wang E*, Mi X*, Thompson MC*... Mato, AR*, Taylor J*, Abdel-Wahab O*, NEJM 2022

Woyach MK-1026 ASH 2021

Summary of Response (CLL/SLL), Efficacy Evaluable Population

^aEfficacy evaluable patients with CLL/SLL who received at least one cycle of MK-1026 at preliminary RP2D of 65 mg QD and had ≥1 post-baseline assessment; Response assessed per iwCLL criteria Data cut-off: April 7, 2021.

Treatment-Emergent AEs

Events, n (%)		All Patients N = 118
All TEAEs		114 (96.6)
Grade ≥3 TEAEs ^a		80 (68.0)
MK-1026-related TEAE		78 (66.1)
Grade ≥3 related TEAEs ^b		31 (26.3)
Related TEAEs leading to disconti	inuation	9 (7.6)
TEAEs ≥20%	All	Grade ≥3
Fatigue	33.1%	3.4%
Constipation	31.4%	0.8%
Dysgeusia	28.0%	0
Cough	24.6%	0
Nausea	24.6%	0.8%
Pyrexia	24.6%	0
Dizziness	22.9%	0
Hypertension	22.9%	9.3%
Peripheral edema	22.0%	0
Diarrhea	21.2%	0.8%
Arthralgia	20.3%	0

Data cut-off: April 7, 2021; *8 patients had grade 5 TEAEs including death after PD (n=3), sepsis (n=1), dyspnea (n=1), and respiratory failure (n=2); *No grade 5 drug-related TEAEs were reported.

Summary: Pirtobrutinib

- Intolerance: Promising safety data with favorable AE profile and low discontinuation rates due to AEs.
 - Head-to-head comparison planned vs Ibrutinib.
- **cBTKi Resistance:** Promising Phase 1-2 data suggestive Pirto can overcome C481 mutant CLL and possibly other cBTKi mechanisms of resistance.
- **Double exposed patients:** Durable remissions observed in a patient population with the largest unmet need.

From Bench to Practice: Treatment Algorithms which include ncBTKis

Memorial Sloan Kettering Cancer Center

Next steps & new means to inhibit BTK in double BTKi (covalent and non covalent) refractory CLL?

Chemical Degradation of BTK in cBTK or ncBTK resistant patients?

